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CREEP OF 2618 ALUMINUM UNDER STEP STRESS CHANGES
PREDICTED BY A VISCOUS-VISCOELASTIC MODEL b

by

James S. Lai and William N. Findley

ABSTRACT
Nonlinear constitutive equations are developed and used to predict from

constant stress data the creep behavior of 2618 Aluminum at 200°C (392°F) for

tension or torsion stresses under varying stress history including step-up,
step-down, and reloading stress changes.

The strain in the constitutive equation employed includes the following

components: linear elastic, time-independent plastic, nonlinear time-dependent
recoverable (viscoelastic), nonlinear time-dependent nonrecoverable (viscous)

positive, and nonlinear time-dependent nonrecoverable (viscous) negative. The
modified superposition principle, derived from the multiple integral represen- I

tation, and strain hardening theory were used to represent the recoverable and

nonrecoverable components, respectively, of the time-dependent strain in the
constitutive equations. Excellent to fair agreement was obtained between the
experimentally measured data and the predictions based on data from constant-

stress tests using the constitutive equations as modified.




INTRODUCTION

The creep behavior of metals under changing stress--especially changes in

state of combined stress and stress reversal--has received little experimental
observation. Mathematical expressions employed, such as strain hardening or
viscoelastic models, usually are unable to describe the detail of creep behavior
under changes such as the above. References to prior work in this area are
given in [1].

In a previous paper [1] the authors described a viscous-viscoelastic model
in which the strain was resolved into five components: elastic e , time-
negative

independent plastic P , positive nonrecoverable (viscous) ‘pos'

. v . p v
nonrecoverable (viscous) ¢ and recoverable (viscoelastic) ¢'°% com-

neg’
ponents. From creep and recovery experiments under combined teasion and torsion,
the time and stress dependence of these components were evaluated for constant

stresses. Constitutive relations for changes in stress state also were discussed

in [1].

In the present paper, constitutive equations for changes in state of com-

bined tension and torsion are developed and used to predict, from the relations
determined from constant stress tests in (1], the creep behavior under abrupt
step-up and step-down changes in tension or torsion. The results are compared
with experiments reported in [2] and with new experiments described in the
following pages. Future work will consider abrupt changes in the state of
combined tension and torsion, stress reversal, relaxation and simultaneous creep

and relaxation.
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MATERIAL AND SPECIMENS

An aluminum forging alloy 2018-T6l was employed in these experiments.
Specimens were taken from the same lot of 2-1/2 in. diameter forged rod as used
in [1] and the same lot as specimens D through i in [2]. Specimens were thin-
walled tubes having outside diameter, wall thickness and gage length of 1.00,
0.060 and 4.00 inches respectively. A more complete description of material
and specimens is given in [1}.

EXPERIMENTAL APPARATUS AND PROCEDURE

The combined tension and torsion creep machine used for these experiments
was described in [3] and briefly in [1]. The temperature control and measure-
ment employed was described in [1,2]. Stress was produced by applying dead
weights at the end of levers. These weights were applied by hand at the start
of a test by lowering them quickly but without shock. The time of the start of
the test was taken to be the instant at which the load was fully applied. In
the present experiments changes in loading were made at intervals during the
creep tests. The load changes were accomplished by hand in the same manner.
Strain was recorded at the following intervals following a load change: every

0.01 h to 0.05 hh; every 0.02 h to 0.1 h; every 0.05 h to 0.5 h; every 0.1 h to

1.0 h; and every 0.2 h to 2.0 h. All experiments were performed at 200°C (392°F).

CONSTITUTIVE EQUATIONS FOR CONSTANT STRESS
In this paper as in the previous one [1] the strain was resolved into five

e

X p v v
components: ¢, ¢! -

ve " ' ; "
¢ . 5 4 , amd ¢ as defined in the introduction,
pos neg

The elastic strain ¢° was determined from the elastic constants at the test
temperature, In {1} the elastic constants at 200°C (392°F) were determined

indirectly from creep test data with the tollowing results
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Leo.5x 10" MPa (9.43 x 10° psi)
G = 2.40 x 10 MPa (3.57 x 10° psi)
v = 0,321 ,
where L , G, and v are the elastic modulus, shear modulus and Poisson's
ratio respectively.
As noted in [1] plastic strains P were essentially zero in the creep

tests performed and creep at constant stress was well represented by a power

function ot time
- g . * ¢ t . (1)

where the time-independent strain t?j and the coefficient of the time-dependent
strain terms ‘:j were tunctions of stress and n was a constant. It was also
shown in [1] that the nonrecoverable «¥(t) and recoverable RAITY components
of time-dependent strain could each be represented by a power function of time
with the same exponent n . Also it was shown that the ratio R of the
coefficient of the recoverable time-dependent and nonrecoverable time-dependent
strains could be taken as a constant. Thus, under a constant stress

¥ ¢ .n .
lij [1/(1+R)] ‘ij t 4 (2)

ve n
t -

i [R/(1+R)) €t (3)

In the previous work [1], the authors tfound the time-dependent strain of
the material under single step loading and recovery to be well described by the

. . +
tollowing two equations tor time-dependent pure axtal strain

n and pure shear

-
strain e

* ‘ ‘ ‘ ,‘ - . - N « .'
ulll\ (o i‘\n yey % }~.‘(~\4‘\ ) . |-§(“ a") (,g\
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e3,() = G = G(r-tt) ¢ & lx-e"” . (5)

The nonlinear relationship of o, and ¢ in ¢ and ¢,, was derived from a third

+
11 12
order multiple integral representation [4,5]. In (4) and (5) o*, 1* are the
creep limits in pure tension and pure torsion respectively, where o-o* or v-t*
are zero for -o* £ 0 £ 0% or -t* £ v £ t* respectively. The creep limit defines
3 +
a stress below which creep appears to be zero or very small.
. : v ve . ,
Separating nonrecoverable ¢ and recoverable ¢ strain components according
3 % \Y e »
to (2), (3) and using (4), (5) the time-dependent parts ¢ and e¥® for creep

under constant tension o and torsion t can be represented by the following

equations:

k‘l“l (t) = (Tfh-) Flo-o*) t" (6)
g3p (¥) ‘S (T%) G(r-1*) t" (7
K-‘l'l (t) = ‘i‘liﬁ) Fa-a®) t" (8)
), (0 = (g St ", (9)

where F;, G;, o*, 1, R and n are the values determined from constant tension
and torsion creep tests as reported earlier [1] and shown in Table 1.
The rationale for separating the time-dependent strains into nonrecoverable
strain ¢' and recoverable strain ¢’ was based on the assumption that recovery
‘e

. . Ve
resulted from recoverable strain accumulated during creep. Thus ¢ was

determined from recovery data tfor the material in a set of constant stress

Information obtained after completion of this work indicated that there was
creep below the creep limit, but at a much lower rate than above the creep
limit,
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creep and recovery tests as reported in [1]. ¢’ was determined from creep

tests by subtracting strains due to ¢'® as described in (1]. Under time-

dependent stress inputs, including step changes, other considerations are re-
qiired in addition to (6)-(9) for predicting ¢' and €'% . These considera-
tions will be presented in the next section.
CONSTITUTIVE EQUATIONS FOR VARIABLE STRESS

Creep behavior is dependent on the past history of stress (or strain).
History dependence can be incorporated in the multiple integral representation
[4,5] for a recoverable-type material. Unfortunately, the experimental diffi-
culty of determining Fi & Gi to completely characterize a given material is
almost insurmountable [5]. Furthermore, as pointed out by Wang and Onat [0,7],
higher order terms beyond the third order of the multiple integral representation
appeared to be required to describe creep of metals under multiple step loadings
with sufficient accuracy. In the following, constitutive equations are developed
to describe €' and €% under time-dependent stress history.

Constitutive Equation for cvc:

In [5], it was shown that the multiple integral representation and various

T

simpiified forms can be used to describe creep behavior of recoverable type
material under variable stress. Among the various simplified forms, the moditied
superposition principle (MSP) [S] has been shown to vield satisfactory results.
Thus, the modified superposition principle will be used here to describe the time-
; ve
dependent recoverable strain
The modified superposition principle has the effect of reducing multiple 1
integrals to single integrals., The modified superposition principle considers

that following the first change in stress at time Y from 0y to o, the creep
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strain is the sum of: the strain which would have resulted had the original

1 continued unchanged; plus the strain (negative) which would

have resulted from an equal but opposite stress (-al) applied at t

stress o
to an

untested specimen; plus the strain which would have resulted from applying the

new stress o, at t; toan untested specimen. Thus, if the strain at con-

stant stress is given by
e = f(o,t) (10)

the strain from N step changes in stress from 0,7 to o; at time t is

given by

N
e(t) = .{ [£(o;,t-t,) - flo; \.t-t, ] . (11)

1=0
The modified superposition principle for a continuously varying stress may be

expressed as follows by considering the limiting case as the steps in (11) tend

to an infinite number of infinitesimal steps of stress,

€
g(t) = wé(g) dg * (12)
30 (&)
0

Applying (11) to the following series of three steps in tension ¢ (or

torsion t) stress:

02(12) for €, < t < t, and CK(TS) for tz <t

ol(rl) for 0 < t < tl s 1

yields the following by inserting (6) and (7) in (11). The time-dependent

recoverable strain g following the third step is given by
ve . L n n

+ Flo) [(t-t)) - (t-t,)"] (13)

+ F(GS)(t'tz)n} v B, ¢t

-

|
|
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ve -x : n n
. G(Tz)[(t-tl)n-(t—tz)n] (14)
+ G(r;)(t-t,)"} ] A I

-~

where the stress functions F(oi) and G(ri) represent F(oi-o') and G(Ti-r')
and are given in (4) and (5).

: : A ? : : ve
For a series of m steps in stress the shearing strain €120 for example,

following the m-th step, has the form:

ve R n n
elz(t) (Tjﬁﬁ{h(xl)[t -(t-tl) ] % coe

™ (15)

+

n
G(Im_l)[(t-tm_:) '(t'tm_l

n
' e SN Ty <8

+

G(r ) (t-t_ ,

Now, if gy s 9, (or o rz) are greater than o* (or t*) respectively and
1 og (or rs) in the third step is less than the stresses o, (or t,) respectively

ve ve .
and ¢ will show

in the second step, then according to (13) [or (14)] both 11 12

partial recovery if o, > o* (or Ts 2 t*). Also, whenever o

- -
3 € o* (or Ty €T )

3

= 0), then the time-dependent strains will exhibit the same

i i

(including Oy = Ty
recovery as from complete unloading. The validity of this prediction will be
explored later in this paper.

. : " : v
Constitutive Equation for ¢

Strain hardening is taken to be applicable to the nonrecoverable strain.

The relations employed were derived as follows. Consider the axial strains as

an example. The derivative of (8) yields the axial strain rate GYI(t)

oV e . peay ol
Lll(t) - i-’—R_ r(\) t . (lb‘
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Eliminating t between (8) and (16) yields

€1, (D) [éhum)]"“"*)

F(o) nF (o) g
from which
.V
‘11 . o [E@ " an
v 1-(1/n) 1+R |
(ery)
Multiplying both sides of (17) by dt and integrating yields
t n
v 1 l/u
e1(8) = TR [l{F[O(C)]} dE] " (18)

In (18) it has been assumed, in accordance with the usual strain hardening
concept, that the same function F(o) applies for variable stress F(o(Z)]
as for constant stress F[o]

For step changes in stress, such as the series of three steps given above,
the axial strain in the third step may be found from (18) by employing the

Dirac delta function as follows:

Y () = ot Fe 1)+ Flo 1 (et
(19)
v PO M), et

Similarly the shearing strain CIZ(t) may be found as follows

e}, (1) = pll6(x 1Y)+ 61 e,
23)
’ [c(rs)]”“(t-tzn“ , t, <t ¢

For a series of m steps in stress, the shearing strain c!z , for example, has

the form
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v

clz(t) = Téi{[G(tl)]l/n(fl) e e

1/n

A CIG SRS h ISPy (21)

n

l/n(t_t 1) : & i

+ [G(T)] s
where F(oi) and G(ri) represent F(oi_or) and G(ri-r*), see (4) and (5).
Total Strain:

The total strain following a series of steps or jumps in stress is found by
adding to the elastic strain corresponding to the stresses existing at the time
of interest the recoverable strain given by (13) or (14) and the nonrecoverable
strain (19) or (21) for axial strain or shear strain, respectively.

The above approach [the viscous-viscoelastic theory (VV)] was employed to
calculate the creep behavior corresponding to several complex stress histories
and compared with actual results in the following section.

In addition, the strain hardening theory alone (SH) as described by (21)
was employed also to predict the total creep strain. In this case the coeffi-
cient == in (21) was replaced by unity and €'C was taken to be zero.

1+R
EXPERIMENTAL RESULTS AND COMPARISONS

Using the material constants in (2), (3), (4), and (5) determined from
constant stress creep and recovery tests as described in [1] and given in Table

I, creep resulting from step-up, step-down and recovery stress change experiments

were predicted using the procedures described above. The results were then com-
pared with corresponding experimental results as shown in Figures 1 through 4.
The experiments consisted of tension or torsion creep tests in which abrupt
changes in load were made at intervals. Several types of load changes often
were made in the same experiment. In the following the predictions for similar

types of load changes are compared with experiments rather than discussing the '

i
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results of each testing sequence. The predictions based on (13), (14), (19) and
(20), the viscous-viscoelastic (VV) theory, are shown as dot-dash lines. The
short-dash lines represent the predictions based on strain hardening (SH) alone.
The solid lines represent the predictions based on modifications of the viscous- 1
viscoelastic (MVV) theory which are discussed in later paragraphs. In Fig. 1-4 i
omission of the dot-dash line or the dash line for any period indicates that the 1
prediction based on the omitted theory is the same as that represented by the

solid lines.

Step-up Experiments:

Step-up experiments are shown in Fig. 1 through 4. In Fig. 1 there is a
sequence of two upward steps following the first period of creep. An upward
step was preceded by a downward step to zero stress in Fig. 2 and 3. A small
stress reduction preceded the step-up in Fig. 4.

(VV) Theory:

Except for a vertical displacement, the agreement between experiment and

creep predicted by the (VV) theory is excellent for the second period in Fig. 1. ‘

During the third period the actual creep rate was somewhat greater than pre-

dicted by the (VV) theory and there was more of a 'primary'" type creep (greater

rate of change of slope) than predicted. |
The third period in Fig. 2 (involving reloading to a higher stress than the

first loading) shows excellent agreement between the prediction of the (VV)

theory and the test data taken from [2]. The third and fourth periods in Fig.

3A consist of reloading to the same stress as the first after a period at zero

stress and then a step-up in stress. Again there is excellent agreement between

data and prediction of the (VV) theory. The experiment in Fig. 4 involves creep

at one stress followed by a small reduction in stress and then a reapplication

of the same stress. In the third period the character of the creep curve and

ol i s e e N mmﬂnﬂ-llﬁlliliﬁ‘d




that predicted by the (VV) theory differ in that the primary-type behavior pre-
dicted at the start of the period was not observed.

greater than predicted.
(SH) Theory:

For step-up experiments the predictions using the strain hardening (SH)

theory are about the same as that of the viscous-viscoelastic (VV) theory. For

the first period of loading, both theories yielded identical results. In Fig.

1, periods 2 and 3, and Fig. 4, period 3, the results from the strain hardening

(SH) theory are somewhat closer to the test data than the (VV) theory. In

Fig. 2, period 3, and Fig. 3A, period 4, the reverse is true. In Fig. 1 the

primary type behavior of the (VV) theory at the start of the period is not found

in the (SH) theory.

Recovery (Complete Unloading):

Recovery following unloading to zero stress is shown in Fig. 1 through 4.
Agreement between the experimental data and the prediction of the (VV) theory
is very good for all experiments except for small vertical shifts in Fig. 1 and

4. In all cases the shape is satisfactorily predicted.

Similar results were also found for recovery following three tests having
complex histories of combined tension and torsion (to be reported later). The
recovery data in the second period of Fig. 2 and 3 is not a prediction, however,
as these data were used in [1] as input in obtaining the constants in Table I.
In Fig. 1 and 4 the recovery shown in periods 6 and 4, respect vely, followed a
complicated history of changes in magnitude of stress.

Predictions of recovery from the strain hardening (SH) theory in all cases
are incorrect. The strain hardening theory predicts no recovery upon complete
unloading, although the experimental data in all cases show time-dependent

recovery as predicted by the viscous-viscoelastic (VV) theory.

Also, the rate of creep was

S e e
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Step-down Stress Change (Partial Unloading) :

Step-down experiments involving partial unloading are shown in Fig. 1 at
periods 4 and 5, Fig. 3B at periods 5 through 8, and Fig. 4 at period 2. The
changes in stress are about 17% in Fig. 1, 10% in Fig. 3, and 7% in Fig. 4. 1In
all of these cases the prediction based on the (VV) theory showed a recovery-type
of behavior, that is, a negative slope of the creep curve with a gradually re-
ducing rate. In Fig 4, at period 2 the gradually reducing rate was reversed in
the middle of the period. However, in every instance the observed creep behavior
showed no negative rate, but a nearly constant small positive rate. On the other
hand, as noted above, complete unloading to zero stress resulted in a recovery
type curve (negative creep rate) in both the observed recovery and the predic-
tion from the (VV) theory.

The prediction based on the (SH) theory for the step-down experiments
showed a small positive rate which was quite similar to the form of the observed
creep behavior. In Fig. 3 periods 5 through 8 the predictions for both (VV) and
(SH) theories were about the same.

Discussion:

The following features of the above results were noted. (a) The strain
hardening (SH) theory did not predict the recovery observed on complete removal
of a stress component. (b) The creep rate following an increase in stress in
all cases was somewhat greater than predicted. Since the contribution of the
nonrecoverable component was about twice that of the recoverable component for
the (VV) theory, it may be concluded that this is a defect of the work-hardening
approach used in computing the nonrecoverable component of strain. (c¢) In the
third period of Fig. 1, the data showed more of a '"primary' type behavior than

predicted. However, there is no such defect under similar circumstances in
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period 4 of Fig. 3a. This may also be a defect of the work hardening concept.
(d) In the step-up tests and recovery at zero stress, there is no ambiguity as
to how the creep limit enters into the calculation. However, on partial unload-
ing the role of the creep limit is less clear.

MODIFICATION OF CONSTITUTIVE EQUATIONS,
(MVV) Theory

Some of the features of the step-down and recovery experiments not properly
described by the (VV) or (SH) theories are better described by assuming that the
behavior with regard to the creep limits is different for the nonrecoverable

ve

. v "
strain ¢ than for the recoverable strain e as follows:

(A) For the nonrecoverable strain component, the strain hardening rule is

still applicable. Upon reduction of stress, this strain rate ¢' continues at
the reduced but increasing rate prescribed by the strain hardening rule, (19),
(20) and (21) for example, until the current stress . equals or is less than
the creep limit o¢* . When 9, ¢ av . ¢' is zero as prescribed by (19), (20)
and (21). Upon reloading to a stress above the creep limit, the nonrecoverable
strain rate ¢’ resumes at the rate prescribed by the same equations as though
there had been no interval R for which .. s o*

(B) For the recoverable strain components cve , on partial unloadig‘. the

.V . -
recoverable strain rate ¢ . becomes and remains zero for all reductions of

stress until the total change in stress from the highest stress ) — previously

encountered to the current stress o equals in magnitude the creep limit o*

That is,

Ve
€

= 0 when (o - oa) g0 . (22)

max
Equation (£2) can be considered as meaning that for a small unloading, the

recoverable strain component is 'frozen'' until the stress differential is greater

b —— e - sl i it .J



than o* before the recovery mechanism is activated.

Besides the response that ¢Y® = 0 under the stress condition described by

(22) for the (MVV) theory, there are two other possible responses for ¢Y®  under

the stress condition given by (22): (a) Y <o (this has been covered by the

(VW) theory) and (b) £ » 0 (for small partial unloading this is not admissible) .

3 -~
(C) For large partial unloading, (om.x - oa) > 0* , the recovery mechanism

becomes active and the recoverable strain component '® nay be computed as if
the previous stress continued to cause creep and a reverse stress equal to

(o..‘ - o.) was applied to the specimen. The recoverable strain may be com-
puted by the modified superposition principle except that the stress is replaced
by the stress difference minus o* when the stress is reduced. This satisfies the
requirement of complete recoverability of B upon complete unloading for one step

loading only,

(D) Upon increasing the stress to o (ob > o.) following a period tx

(a dead zone) for which (o - ca) <o* and ¢'® = 0 as discussed in (B)

max
above, the recoverable strain component ¢'® continues in accordance with the
viscoelastic behavior (12) as though the period t, never occurred. Thus, in
computing the behavior for situations described in (B) and (D), it is necessary
to introduce a time shift in equations (13), (14) and (15) to eliminate the
appropriate period . when ¢'® is "frozen." Thus the new time t' subse-
quent to a period L " (tb - ta) , becomes t' = t - (tb - t‘) , where t is
the real time and ., t, are the times when aq and o, are applied.

(E) Of course it is possible if not probable that the creep surface in
stress space defining the creep limit changes size, shape and position as a

result of plastic and creep strains, However, the nature of such changes,

if any, is not known at present.

Further load changes may involve difficulties because of nonlinearity.

et e

I O "




- 15 <

The predictions of the modified viscous-viscoelastic (MVV) theory computed
in accordance with A through D above are shown as solid lines in Fig. 1 through
4. 'These predictions are in accord with the experimental data in Fig. 1, 2, 3A
and 4, and are generally better representations of the material behavior than
either the (VV) or (SH) theories.

However, the small step-down experiments shown in Fig. 3B are best repre-
sented by the (VV) theory with the (SH) theory yielding the next best descrip-
tion of the data. The data in Fig. 3B are an approximation of stress relaxation
in that the stress was held constant at each step until the strain had returned
to its previous value before the stress was reduced again. Also the shape of
the actual recovery curve resulting from complete unloading following a series
of unloading steps (Fig. 1 period 6) is better described by the (VV) than the
(MVV) theory. A similar result was also observed in the recovery following
complete unloading in a creep test under variable combined tension and torsion
(to be reported later).

All the partial step-down tests shown in Fig. 1 and 4 are in the range

where the change in stress is less than the magnitude of the creep limit (hence
there was no contribution from Eve ) and the stress following the change was |
greater than the creep limit (hence ¢Y would continue at a reduwed rate). As

shown for partial step-down tests there was no ''recovery' type behavior and the

creep rate was positive or approaching zero, which was in accord with the (MVV) S
theory. Additional step-down tests in which the change in stress is greater

than the magnitude of the creep limit are needed to explore further the role of

the creep limit. .
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AGING

The possibility that aging may have affected the results of the experiments
was investigated further. A tension creep test was performed at 25 ksi stress
at 200°C (392°F) after aging at the same temperature for 95 hr. The results
showed a small increase in creep rate compared to the results of Tests Fl and
16 reported in (1] at the same stress but aged for 18 hr. Analysis of the data
yielded the following values of the constants in (1) for the test which was aged
for 95 hr.: For best fit n = 0.237 , ¢ = 0.2668 per cent , ¢ = 0.0557 per
cent hr'" ; for n = 0.270 , 2 = 0.2716 2 ¢’ = 0.0508. The creep rate ¢ at
I hr. is given by nf‘ . Making this computation for the three ages available

yielded the following creep rates: Aged 18 hr., the average of Tests Fl and lo6

vielded ¢ = 0.0085%/hr.; aged 95 hr. ¢ = 0.0132%/hr., aged 1103 hr., ¢ = 0.230%/hr.

Interpolating these values on the basis of either a log-log relation or linear
time-log strain-rate relation yielded an increase of creep rate from 18 to 30 hr.
of about 7 per cent tor either interpolation. Thus during the testing time of
the experiments reported the creep rate increased about 1/2 per cent per hr.,
which is considered negligible over the time span of the experiments.
RESULTS AND CONCLUSIONS

Analysis of results of creep tests of 2618 aluminum under a variety of
changes in stress during creep in the nonlinear range show that a strain harden-
ing (SH) theory does not properly describe the behavior on unloading or reloading;
but a viscous-viscoelastic theory with certain modifications (MVV) theory pre-
dicts most of the features of the observed creep behavior quite well.

Among the conclusions are the following:
1. The behavior may be represented by resolving the time-dependent strain into

recoverable and nonrecoverable components having the same time dependence.

s ——— : s
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The material behaves as though there was a creep limit such that creep is

very small or zero unless the stress is greater than a limiting value.

3. On partial unloading the material behaves as though the nonrecoverable
strain component ¥ continued to creep in accordance with strain hardening
unless the stress became less than the creep limit; whereas the recoverable
strain component V" remained constant unless the decrease in stress
exceeded the magnitude of the creep limit.

4. On reloading following an interval t of partial unloading involving no

ve ve .
the component . resumed creep as though the interval

further change in
% did not exist.
5. Very small reductions of stress are best represented by the viscous-visco-
elastic (VV) theory, which is inconsistent with the behavior under small
stress reductions.
6. Recovery on complete unloading following a history of step changes in stress

1s reasonably represented by the (VV) or (MVV) theories, but best represented

by the (VV) theory.
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Table 1. Constants for Equations (2), (3), (4), and (5).

12

= 6.084 x 10°°°, per Pa-hr" (0.004195, % per ksi-hrn)

Ll 4

-7.431 x 10729, per Pa’-hr" (-0.0003533, % per ksi -hr")

~N o+

* a 7.596 x 10728, per Pa>-hr" (0.0000249, % per ksi’-hr™)

-
"

o* = 9.143 107, Pa (13.26, ksi)

x

G = 7.170 x 107'%, per Pa-hr" (0.004944, % per ksi-hr")

Gy = 2.703 x 107%%, per pad-hr™ (0.00000886, $ per ksi>-hr™)

t* e 4.571 x 10, Pa (6.630, ksi)

Note: n = 0.270 , R = 0.S5 .
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FIGURE CAPTIONS

Fig. 1. Creep of 2018AL at 200°C Under Step Loading. Where a theory is not
shown it is the same as the (MVV) Theory. Numbers indicate periods.

0 69.0 MPa (10 ksi) ,
T, = 82.7 MPa (12 ksi) ,

Tg 96.5 MPa (14 ksi)

u

ro
.

Creep of 2618AL at 200°C Under Complete Unloading and Reloading to a
Higher Stress. Where a theory is not shown it is the same as the (MVV)
Theory. Numbers indicate periods.

Fig.

137.9 MPa (20 ksi) ,
193.1 MPa (28 ksi)

Qg

1

5
-

f

(&)

Fig. 3A. Creep of 2018AL at 200°C Under Complete Unloading, Reloading and
Step-Up. Where a theory is not shown it is the same as the (MVV)
Theory. Numbers indicate periods.

119.5 MPa (17.33 ksi) ,
143.4 MPa (20.8 ksi)

\‘l

(AN
-
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Fig. 3B. Creep of 2618AL at 200°C Under Very Small Unloading Steps. Numbers
indicate periods. !

o, = 119.5 MPa (17.33 ksi) ,

0, = 143.4 MPa (20.8 ksi) , 4

o5 = 142.0 MPa (20.6 ksi) , i
) o4 = 140.7 MPa (20.4 ksi) , ‘ é

ag = 139.3 MPa (20.2 ksi) , -

o, = 137.9 MPa (20.0 ksi)

Fig. 4. Creep of 2618AL at 200°C With Small Unloading and Reloading.
Numbers indicate periods.

o

| = 193.1 MPa (28 ksi) ,
0, = 179.4 MPa (26 ksi)
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